Title
Detection of quantum correlations
Creator
Dimić, Aleksandra, 1991-, 36820583
Copyright date
2019
Object Links
Select license
Autorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
License description
Dozvoljavate samo preuzimanje i distribuciju dela, ako/dok se pravilno naznačava ime autora, bez ikakvih promena dela i bez prava komercijalnog korišćenja dela. Ova licenca je najstroža CC licenca. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.sr_LATN. Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/legalcode.sr-Latn
Language
English
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 21.11.2019.
Other responsibilities
mentor
Dakić, Borivoje, 1980-, 37358183
mentor
Damnjanović, Milan, 1953-, 28714087
član komisije
Milošević, Ivanka, 1962-, 15325543
član komisije
Vuković, Tatjana, 1970-, 36651879
član komisije
Balaž, Antun, 1973-, 13695591
Academic Expertise
Prirodno-matematičke nauke
Academic Title
-
University
Univerzitet u Beogradu
Faculty
Fizički fakultet
Alternative title
Detekcija kvantnih korelacija
Publisher
[A. Dimić]
Format
92 lista
description
Physics - Quantum Information Theory / Fizika - Kvantna informacija
Abstract (en)
One of the main foci of modern applied quantum information theory
is the production of large-scale quantum entanglement involving many
particles, to achieve the next-generation quantum technologies. Although a full-scale quantum computer is still far away in time, in the next
few years we can expect to have quantum devices composed of up to a
hundred controllable qubits. The primary challenge in moving towards
such devices lies in the development of reliable and resource-efficient
detection techniques to prove genuine quantum advantage. The main
objective of this thesis is to investigate novel methods to detect the presence of quantum correlations in such systems, in particular, quantum
entanglement and quantum nonlocality.
The first part of this thesis is dedicated to entanglement detection
in large-scale quantum systems. Our main goal is to develop a novel
probabilistic method in which entanglement is seen as an ability of a
quantum system to accomplish certain information-processing tasks.
We show that for certain classes of large (e.g. few tens of qubits) quantum states, even a single copy of a quantum state suffices to detect
entanglement with a high confidence. Compared to the standard detection methods, this makes our method exceptionally resource-efficient.
The developed probabilistic scheme applies to multiple classes of states, vital for quantum computation, such as cluster states or ground
states of local Hamiltonians.
In the second part of this thesis, we develop a generic framework
for translating any entanglement witness into a resource-efficient probabilistic scheme. We show that the confidence level of entanglement
detection grows exponentially fast with the number of detection events,
which makes this ansatz very efficient and reliable. Furthermore, we
present the first experimental performance of our method by verifying
the presence of entanglement in a photonic six-qubit cluster state.
The third part of this thesis describes the extension of our entanglement verification method to quantum nonlocality. Concrete examples
are presented where we convert Bell’s inequalities into the probabilistic
procedure and incorporate our method into self-testing schemes. We
show that the performance of our method significantly exceeds the ability of the existing methods for detection of quantum nonlocality and
self-testing.
The last part of this thesis is a study of the weak-convergence properties of random variables generated by quantum measurements. Beginning with a sequence of random variables generated by repeated
unsharp quantum measurements, we study the limit distribution of
measured relative frequency. We provide the de Finetti-type of representation theorem for all separable states, showing that the measured
distribution can be well approximated by a mixture of normal distributions. Additionally, we investigate the convergence rates and show
that the relative frequency converges to some constant at the rate of
order 1=pN for all separable inputs. Finally, we provide an example of
a strictly unsharp quantum measurement where we obtain better scaling by using entangled inputs. We find such behaviour of entangled
states relevant for quantum information processing.
Abstract (sr)
Glavni cilj istraˇzivanja u oblasti moderne primenjene kvantne informacije je generisanje viˇseˇcestiˇcnih sistema u kojima su prisutne kvantne
korelacije (na prvom mestu kvantna spletenost), a koji se mogu primeniti za razvoj kvantnih tehnologija. Postojanje takve vrsta korelacija
jeste jedan od osnovnih preduslova za rad kvantnih raˇcunara. Sam
kvantni raˇcunar zahteva spletenost viˇse (desetina) hiljada kvantnih bitova u potpuno kontrolisanim eksperimentalnim uslovima, ˇsto je joˇs
dalek cilj (sa praktiˇcnog stanoviˇsta). U ovom trenutku, nalazimo se u
poˇcetnoj fazi razvoja kvantnih tehnologija i u narednih nekoliko godina
moˇzemo oˇcekivati realizaciju kvantnih sistema koji se sastoje od nekoliko stotina kvantnih bitova, u relativno kontrolisanim uslovima. Jedan
od osnovnih zadataka i budu´cih izazova jeste razvoj novih metoda detekcije kvantne spletenosti u viˇseˇcesticnim sistemima. To je ujedno i
osnovni cilj ove doktorske disertacije.
Prvi deo ove teze posve´cen je detekciji kvantne spletenosti u velikim kvantnim sistemima. Predstavljen je novi probabilistiˇcki metod
detekcije kvantne spletenosti baziran na kvantno-informatiˇckim protokolima. Uveden je novi pristup ˇcitavom problemu detekcije, u kome
se sama kvantna spletenost posmatra kao potencijal kvantnog sistema
da uspeˇsno ostvari neki vid obrade informacije. Pokazali smo da u
sluˇcaju odred¯enih klasa velikih kvantnih stanja (desetak kvantnih bitova), moˇzemo detektovati kvantnu spletenost iz samo jedne kopije
kvantnog stanja sa visokim nivoom poverenja. Stoga je razvijeni metod
detekcije viˇsestruko efikasniji u pored¯enju sa standardnim metodama.
Ovaj metod se moˇze primeniti na klase stanja posebno znaˇcajne za
kvantno raˇcunarstvo, kao ˇsto su klaster stanja ili osnovna stanja lokalnih hamiltonijana.
Drugi deo ove teze fokusiran je na razvoj generalnog metoda za prevod¯enje bilo koje detekcione procedure bazirane na operatorima provere
entanglement witnesses u efikasnu probabilistiˇcku shemu. Pokazano je da
nivo poverenja detekcije kvantne spletenosti raste eksponencijalno sa
brojem kopija posmatranog kvantnog sistema, ˇsto potvrd¯uje efikasnost
metoda. Urad¯ena je prva eksperimentalna potvrda razvijenog metoda,
verifikacijom kvantne spletenosti u fotonskom klaster stanju koje se
sastoji od ˇsest kvantnih bitova.
U tre´cem delu ove teze, razvijeni metod primenjen je na detekciju nelokalnosti. Kroz razliˇcite primere, pokazali smo kako se vrˇsi
prevod¯enje Belovih nejednakosti u probabilistiˇcku proceduru i kako seovaj metod moˇze iskoristiti kao alternativa za metod samoprovere (selftesting). Pokazano je da je uˇcinak razvijenog metoda znatno bolji od
dosadaˇsnjih metoda detekcije kvantne nelokalnosti.
Poslednji deo ove teze predstavlja ispitivanje konvergencije distribucije sluˇcajnih varijabli dobijenih pomo´cu generalnih kvantnih merenja.
Izvedena je teorema de Finetijevog tipa za sva separabilna kvantna stanja, u kojoj smo pokazali da se sve distribucije generisane pomo´cu ovih
stanja mogu dobro aproksimirati kao konveksna kombinacija normalnih
raspodela. Ispitivana je i brzina konvergencije raspodele i dobijeno je
da se u sluˇcaju separabilnih stanja relativna frekvencija stabilizuje brzinom reda 1=pN, gde je N broj ponavljanja. Sa druge strane, kvantno
spletena stanja daju bolje (ve´ce) brzine konvergencije. Takvo ponaˇsanje
kvantno spletenih stanja kroz odgovaraju´ce protokole, tj. \kvantne
igre" moˇze biti upotrebljeno za detekciju kvantnih korelacija.
Authors Key words
quantum correlations, entanglement, probabilistic method,
detection, quantum nonlocality, convergence, random variables
Authors Key words
kvantne korelacije, kvantna spletenost, probabilistiˇcki metod,
detekcija, kvantna nelokalnost, konvergencija, sluˇcajne varijable
Classification
530.145.86(043.3)
Type
Tekst
Abstract (en)
One of the main foci of modern applied quantum information theory
is the production of large-scale quantum entanglement involving many
particles, to achieve the next-generation quantum technologies. Although a full-scale quantum computer is still far away in time, in the next
few years we can expect to have quantum devices composed of up to a
hundred controllable qubits. The primary challenge in moving towards
such devices lies in the development of reliable and resource-efficient
detection techniques to prove genuine quantum advantage. The main
objective of this thesis is to investigate novel methods to detect the presence of quantum correlations in such systems, in particular, quantum
entanglement and quantum nonlocality.
The first part of this thesis is dedicated to entanglement detection
in large-scale quantum systems. Our main goal is to develop a novel
probabilistic method in which entanglement is seen as an ability of a
quantum system to accomplish certain information-processing tasks.
We show that for certain classes of large (e.g. few tens of qubits) quantum states, even a single copy of a quantum state suffices to detect
entanglement with a high confidence. Compared to the standard detection methods, this makes our method exceptionally resource-efficient.
The developed probabilistic scheme applies to multiple classes of states, vital for quantum computation, such as cluster states or ground
states of local Hamiltonians.
In the second part of this thesis, we develop a generic framework
for translating any entanglement witness into a resource-efficient probabilistic scheme. We show that the confidence level of entanglement
detection grows exponentially fast with the number of detection events,
which makes this ansatz very efficient and reliable. Furthermore, we
present the first experimental performance of our method by verifying
the presence of entanglement in a photonic six-qubit cluster state.
The third part of this thesis describes the extension of our entanglement verification method to quantum nonlocality. Concrete examples
are presented where we convert Bell’s inequalities into the probabilistic
procedure and incorporate our method into self-testing schemes. We
show that the performance of our method significantly exceeds the ability of the existing methods for detection of quantum nonlocality and
self-testing.
The last part of this thesis is a study of the weak-convergence properties of random variables generated by quantum measurements. Beginning with a sequence of random variables generated by repeated
unsharp quantum measurements, we study the limit distribution of
measured relative frequency. We provide the de Finetti-type of representation theorem for all separable states, showing that the measured
distribution can be well approximated by a mixture of normal distributions. Additionally, we investigate the convergence rates and show
that the relative frequency converges to some constant at the rate of
order 1=pN for all separable inputs. Finally, we provide an example of
a strictly unsharp quantum measurement where we obtain better scaling by using entangled inputs. We find such behaviour of entangled
states relevant for quantum information processing.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.