Title
Ispitivanje koordinativnih sposobnosti epinefrina prema Fe2+ i Fe3+ katjonima i redoks aktivnost nastalih kompleksa
Creator
Korać Jačić, Jelena K., 1988-, 63977225
Copyright date
2020
Object Links
Select license
Autorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
License description
Dozvoljavate samo preuzimanje i distribuciju dela, ako/dok se pravilno naznačava ime autora, bez ikakvih promena dela i bez prava komercijalnog korišćenja dela. Ova licenca je najstroža CC licenca. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.sr_LATN. Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/legalcode.sr-Latn
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 30.10.2020.
Other responsibilities
mentor
Spasojević, Ivan, 1976-, 29205863
mentor
Grgurić-Šipka, Sanja, 1971-, 12816743
član komisije
Šumar-Ristović, Maja, 1971-, 14048103
član komisije
Stanković, Dalibor, 1985-, 64246281
Academic Expertise
Prirodno-matematičke nauke
Academic Title
-
University
Univerzitet u Beogradu
Faculty
Hemijski fakultet
Alternative title
Investigation of the coordination capabilities of epinephrine towards Fe2+ and Fe3+ cations and their redox activity
Publisher
[J. Korać Jačić]
Format
IX, 83, V str.
description
Hemija - Neorganska hemija / Chemistry - Inorganic chemistry
Abstract (sr)
Epinefrin je kateholamin sa značajnom fiziološkom ulogom. Konformacija ovog molekula
utiče na njegovu interakciju sa drugim molekulima i na njegove biološke efekte. Na fiziološkim
pH vrednostima, koordinativne sposobnosti epinefrina prema gvožđu i redoks interakcije epinefrina
sa gvožđem su od suštinske važnosti za razumevanje dve veoma različite pojave. Prva pojava je
štetno dejstvo koje hronični psihološki/sredinski stres izaziva na nivou kardiovaskularnog sistema.
Druga pojava je umrežavanje kateholaminima bogatih biopolimera i struktura. Kako bi se rasvetlile
uloge rastvarača i vodoničnih veza u interakcijama epinefrina sa gvožđem, proučavana je
konformacija epinefrina u vodi i polarnom rastvaraču dimetil sulfoksidu (DMSO).
U ovoj disertaciji su predstavljeni rezultati proučavanja mehanizama interakcije epinefrina
sa Fe2+ i Fe3+ jonima pri različitim koncentracionim odnosima na pH 7,4, odnosno na pH vrednosti
koja odgovara fiziološkim uslovima. U svrhu istraživanja bioloških efekata epinefrina, u ovoj
disertaciji su predstavljena ispitivanja efekta Epi-Fe3+ kompleksa na ćelije koje konstitutivno
eksprimiraju adrenergičke receptore.
Konformacije epinefrina u polarnim rastvaračima, vodi i DMSO, su proučavane metodama
H nuklearne magnetne rezonance (1H NMR) kao i dvodimenzionalnim metodama nuklearne
magnetne rezonance, i to: 1H - 1H COSY, 1H - 15N HSQC i NOESY. Na NH2 i CH2 grupama
epinefrina su uočeni hemijski neekvivalentni protoni prilikom korišćenja DMSO kao rastvarača.
Ove pojave nisu uočene kada je rastvarač bila voda. Analizom uticaja korišćenog rastvarača na
NMR spektar, i analizom uticaja povećanja temperature uzorka na NMR spektar, dolazi se do
zaključka da jedan od protona amino grupe formira jaku intramolekulsku vezu sa alifatičnom
hidroksilnom grupom, koja je pak H donor drugoj intermolekularnoj vezi sa DMSO. Pomoću
NOESY metode su prikupljeni podaci o prostornoj poziciji protona u bočnom lancu. Na taj način je
formiran 3D model konformacije epinefrina u DMSO. Ukratko, epinefrin formira dodatni petočlani
prsten koji sadrži bifurkovane intramolekulske/intermolekulske vodonične veze i zauzima strukturu
oblika škorpiona, gde kateholni prsten predstavlja telo škorpiona, a bočni lanac predstavlja rep koji
je povijen u smeru glave škorpiona. U vodi, kao rastvaraču, konformacija epinefrina ne poseduje
intramolekulske vodonične veze pa je tada struktura ovog molekula najverovatnije definisana
vodoničnim vezama sa molekulima vode.
U okviru ove disertacije ispitivanjima je ustanovljeno da epinefrin sa Fe3+ jonima gradi
stabilne visokospinske komplekse čija je stehiometrija 1:1 ili 3:1. Stehiometrija ovog kompleksa
zavisi od odnosa koncentracija epinefrina i Fe3+ jona. Na kateholnom prstenu epinefrina atomi
kiseonika predstavljaju mesto za formiranje koordinacione veze unutar fiziološki relevantnog
bidentatnog 1:1 kompleksa. Fe3+ katjon ima slab uticaj na redoks osobine epinefrina. Međutim,
epinefrin i Fe2+ joni grade kompleks koji je jak redukcioni agens. Posledica je redukcija O2,
proizvodnja vodonik peroksida i formiranje Epi-Fe3+ kompleksa. U ovom procesu epinefrin se ne
oksiduje, odnosno Fe2+ jon nije prenosilac, već donor elektrona. Oksidacija Fe2+ jona koja je
katalizovana epinefrinom predstavlja moguće hemijsko objašnjenje za stresom izazvana oštećenja
ćelija srca. Takođe, rezultati ovih ispitivanja su u skladu sa prethodnim istraživanjima kateholamina
u polimerima i njihovih interakcija sa gvožđem, i upućuju na nove strategije za poboljšavanje
efikasnosti umrežavanja kateholaminima bogatih biopolimera i struktura.
U stresnim situacijama epinefrin se luči i može interagovati sa labilnim gvožđem koje se
nalazi u ljudskoj plazmi. Te interakcije mogu prouzrokovati značajne patofiziološke posledice. Uiv
ovoj disertaciji su prikazani rezultati istraživanja prema kojima epinefrin i Fe3+ joni na fiziološkom
pH grade stabilni 1:1 bidentatni kompleks. Takođe je pokazano da na fiziološkom pH epinefrin ne
degradira u prisustvu gvožđa. Utvrđeno je i da epinefrin i Fe2+ joni grade bezbojni kompleks i da je
taj kompleks stabilan pri anaerobnim uslovima. Uočeno je i da epinefrin u prisustvu O2 značajno
promoviše oksidaciju Fe2+ jona i formiranje Epi-Fe3+ kompleksa. Pri eksperimentima rađenim
metodom ciklične voltametrije, Epi-Fe2+ kompleks je pokazao potencijal E1/2 = -582 mV (u odnosu
na standardnu vodoničnu elektrodu). Ovakva vrednost E1/2 potencijala objašnjava katalizovanu
oksidaciju. Interakcije sa gvožđem mogu uticati na biološke efekte/efikasnost epinefrina. Uticaj
vezivanja gvožđa na biološko ponašanje epinefrina je ispitivan metodom nametnute voltaže na
deliću membrane u konfiguraciji cela ćelija, u kulturi ćelija koje konstitutivno eksprimiraju
adrenergičke receptore. Epinefrin je samostalno, bez značajnog prisustva gvožđa, uzrokovao
povećanje amplitude struja usmerenih ka spoljašnosti ćelija, tj. povećanje izlaznih struja. Kompleks
epinefrina sa Fe3+ nije izazivao slične posledice. Ovim se nameće zaključak da formiranje
kompleksa sa gvožđem sprečava vezivanje epinefrina za adrenergičke receptore i njihovu
posledičnu aktivaciju. Prooksidativna aktivnost Epi-Fe2+ kompleksa možda predstavlja vezu između
hroničnog stresa i kardiovaskularnih problema, a labilno gvožđe u plazmi je potencijalni modulator
bioloških aktivnosti liganda.
Abstract (en)
Epinephrine (Epi) is a catecholamine with important physiological roles. Interactions with
other molecules and associated biological effects of Epi are controlled by its molecular
conformation. Coordinate interactions of epinephrine with iron at physiological pH and their redox
activity are crucial for understanding two distinct phenomena. First, the adverse effects that chronic
stress causes to cardiovascular system. Second, the cross-linking of biopolymers and frameworks
which are rich in catecholamines. Conformation of epinephrine in polar solvents, namely in
dimethyl sulfoxide (DMSO) and water, was investigated in order to shed light on effects solvents
and hydrogen bonds exert on interactions of epinephrine with iron.
Mechanism of epinephrine interactions with Fe2+ and Fe3+ ions was studied at different
concentration ratios, at physiological pH (pH 7.4), and the results are presented in this dissertation.
For the sake of exploration of biological effects of epinephrine, this dissertation also contains the
results of examination of effects Epi-Fe3+ complex has on cell culture with constitutive expression
of adrenergic receptors.
Conformation of epinephrine in polar solvents, namely in dimethyl sulfoxide (DMSO) and
water, was investigated using 1H NMR, 1H - 1H COSY, NOESY and 1H - 15N HSQC methods.
When DMSO was used as a solvent, chemical and magnetic nonequivalence of protons was spotted
at NH2 and CH2 groups on epinephrine. Characteristics of hydrogen bonds in DMSO were
determined by studying effect which temperature rise has on NMR spectra and also analyzing
influences of solvent substitution on NMR spectra. Results have shown that epinephrine induces
strong intramolecular bond between one of the protons of NH2 group and the OH group on the side
chain. On the other hand, the OH group on the side chain, i.e. the aliphatic OH group, presents a
proton donor for intermolecular bond between epinephrine and DMSO. This phenomenon was not
noticed when water was used as a solvent. 3D modelling of epinephrine molecule structure was
based on information about spatial arrangement of protons, which in turn was obtained using
NOESY method. Obtained 3D model shows that epinephrine in DMSO has a rigid structure that
resembles the shape of a scorpion, in which the catechol ring presents the body of the scorpion and
the side chain presents the tail of the scorpion. This structure is a consequence of formation of an
additional five–membered ring limited by inter/intra–molecular bonds. If water is used as a solvent
(instead of DMSO), epinephrine takes different and non-rigid conformation which does not possess
the aforementioned intramolecular hydrogen bond. In this case, conformation of epinephrine is
determined by hydrogen bonds with solvent molecules.
Examinations conducted in the scope of this dissertation showed that epinephrine and Fe3+
form stable high-spin complexes in 1:1 and 3:1 stoichiometry. Stoichiometry of these depends on
concentration ratio of epinephrine and Fe3+. Results acquired using Raman spectroscopy have
shown that 1:1 bidentate Epi–Fe3+ complex is formed by coordinative bonding of Fe3+ ions to
epinephrine molecule through O atoms on the catechol ring. Effect of Fe3+ and Fe2+ ions on redox
properties of epinephrine was studied using method of cyclic voltammetry. It was observed that
Fe3+ ions do not significantly affect redox properties of epinephrine, but epinephrine with Fe2+ ions
forms strong reducing agent. Fe2+ ion presents electron donor that in the presence of epinephrine
reduces O2 and causes production of H2O2. Specific hemism of epinephrine, which includes
oxidation of Fe2+ ions, may present a mechanism that explains stress-induced cardiotoxicity and
heart diseases. Also, these results can be used for improvement of synthesis and development of
biopolymers.vi
In stressful situations epinephrine is released and it may interact with labile iron in human
blood plasma. These interactions can have potentially important (patho)physiological effects. In this
dissertation, it is shown that at physiological pH epinephrine and Fe3+ build stable 1:1 high-spin
bidentate complex. It is also shown that in presence of iron, at physiological pH, epinephrine does
not degrade. It was observed that epinephrine and Fe2+ build colorless complex, which was stable
under anaerobic conditions. In presence of O2, epinephrine significantly catalyzed oxidation of Fe2+
ions and formation of Epi-Fe3+ complex. Cyclic voltammetry results showed that the mid-point
potential of Epi-Fe2+ complex equals -582 mV (vs. standard hydrogen electrode). This value of
mid-point potential explains the oxidation promotion. Biological effects/efficiency of epinephrine
are influenced by its interaction with iron. Iron binding effects on biological performance of
epinephrine were examined using patch clamping in cell culture with constitutive expression of
adrenergic receptors. Epinephrine, on its own, induced an increase of outward currents, whereas
Epi-Fe3+ complex did not evoke similar phenomenon. These imply that the binding of epinephrine
to adrenergic receptors and their activation is inhibited by the formation of the complex of Epi with
iron. Oxidative promoting activity of Fe2+ in the presence epinephrine may represent a basis for
cardiovascular problems caused by chronic stress. The results obtained in this dissertation indicate
that the labile iron pool may have a new function that represents a modulation of the activity of
biologically significant ligands/molecules.Epinephrine (Epi) is a catecholamine with important physiological roles. Interactions with
other molecules and associated biological effects of Epi are controlled by its molecular
conformation. Coordinate interactions of epinephrine with iron at physiological pH and their redox
activity are crucial for understanding two distinct phenomena. First, the adverse effects that chronic
stress causes to cardiovascular system. Second, the cross-linking of biopolymers and frameworks
which are rich in catecholamines. Conformation of epinephrine in polar solvents, namely in
dimethyl sulfoxide (DMSO) and water, was investigated in order to shed light on effects solvents
and hydrogen bonds exert on interactions of epinephrine with iron.
Mechanism of epinephrine interactions with Fe2+ and Fe3+ ions was studied at different
concentration ratios, at physiological pH (pH 7.4), and the results are presented in this dissertation.
For the sake of exploration of biological effects of epinephrine, this dissertation also contains the
results of examination of effects Epi-Fe3+ complex has on cell culture with constitutive expression
of adrenergic receptors.
Conformation of epinephrine in polar solvents, namely in dimethyl sulfoxide (DMSO) and
water, was investigated using 1H NMR, 1H - 1H COSY, NOESY and 1H - 15N HSQC methods.
When DMSO was used as a solvent, chemical and magnetic nonequivalence of protons was spotted
at NH2 and CH2 groups on epinephrine. Characteristics of hydrogen bonds in DMSO were
determined by studying effect which temperature rise has on NMR spectra and also analyzing
influences of solvent substitution on NMR spectra. Results have shown that epinephrine induces
strong intramolecular bond between one of the protons of NH2 group and the OH group on the side
chain. On the other hand, the OH group on the side chain, i.e. the aliphatic OH group, presents a
proton donor for intermolecular bond between epinephrine and DMSO. This phenomenon was not
noticed when water was used as a solvent. 3D modelling of epinephrine molecule structure was
based on information about spatial arrangement of protons, which in turn was obtained using
NOESY method. Obtained 3D model shows that epinephrine in DMSO has a rigid structure that
resembles the shape of a scorpion, in which the catechol ring presents the body of the scorpion and
the side chain presents the tail of the scorpion. This structure is a consequence of formation of an
additional five–membered ring limited by inter/intra–molecular bonds. If water is used as a solvent
(instead of DMSO), epinephrine takes different and non-rigid conformation which does not possess
the aforementioned intramolecular hydrogen bond. In this case, conformation of epinephrine is
determined by hydrogen bonds with solvent molecules.
Examinations conducted in the scope of this dissertation showed that epinephrine and Fe3+
form stable high-spin complexes in 1:1 and 3:1 stoichiometry. Stoichiometry of these depends on
concentration ratio of epinephrine and Fe3+. Results acquired using Raman spectroscopy have
shown that 1:1 bidentate Epi–Fe3+ complex is formed by coordinative bonding of Fe3+ ions to
epinephrine molecule through O atoms on the catechol ring. Effect of Fe3+ and Fe2+ ions on redox
properties of epinephrine was studied using method of cyclic voltammetry. It was observed that
Fe3+ ions do not significantly affect redox properties of epinephrine, but epinephrine with Fe2+ ions
forms strong reducing agent. Fe2+ ion presents electron donor that in the presence of epinephrine
reduces O2 and causes production of H2O2. Specific hemism of epinephrine, which includes
oxidation of Fe2+ ions, may present a mechanism that explains stress-induced cardiotoxicity and
heart diseases. Also, these results can be used for improvement of synthesis and development of
biopolymers.vi
In stressful situations epinephrine is released and it may interact with labile iron in human
blood plasma. These interactions can have potentially important (patho)physiological effects. In this
dissertation, it is shown that at physiological pH epinephrine and Fe3+ build stable 1:1 high-spin
bidentate complex. It is also shown that in presence of iron, at physiological pH, epinephrine does
not degrade. It was observed that epinephrine and Fe2+ build colorless complex, which was stable
under anaerobic conditions. In presence of O2, epinephrine significantly catalyzed oxidation of Fe2+
ions and formation of Epi-Fe3+ complex. Cyclic voltammetry results showed that the mid-point
potential of Epi-Fe2+ complex equals -582 mV (vs. standard hydrogen electrode). This value of
mid-point potential explains the oxidation promotion. Biological effects/efficiency of epinephrine
are influenced by its interaction with iron. Iron binding effects on biological performance of
epinephrine were examined using patch clamping in cell culture with constitutive expression of
adrenergic receptors. Epinephrine, on its own, induced an increase of outward currents, whereas
Epi-Fe3+ complex did not evoke similar phenomenon. These imply that the binding of epinephrine
to adrenergic receptors and their activation is inhibited by the formation of the complex of Epi with
iron. Oxidative promoting activity of Fe2+ in the presence epinephrine may represent a basis for
cardiovascular problems caused by chronic stress. The results obtained in this dissertation indicate
that the labile iron pool may have a new function that represents a modulation of the activity of
biologically significant ligands/molecules.
Authors Key words
epinefrin, Fe2+ i Fe3+ joni, struktura, kompleks, koordinacione veze, redoks
potencijal, biološka aktivnost
Authors Key words
epinephrine, Fe2+ and Fe3+ ions, conformation, complex, coordinate bond,
redox potential, biological activity
Classification
546.722/.723-386:577.175.5:543.242(043.3)
Type
Tekst
Abstract (sr)
Epinefrin je kateholamin sa značajnom fiziološkom ulogom. Konformacija ovog molekula
utiče na njegovu interakciju sa drugim molekulima i na njegove biološke efekte. Na fiziološkim
pH vrednostima, koordinativne sposobnosti epinefrina prema gvožđu i redoks interakcije epinefrina
sa gvožđem su od suštinske važnosti za razumevanje dve veoma različite pojave. Prva pojava je
štetno dejstvo koje hronični psihološki/sredinski stres izaziva na nivou kardiovaskularnog sistema.
Druga pojava je umrežavanje kateholaminima bogatih biopolimera i struktura. Kako bi se rasvetlile
uloge rastvarača i vodoničnih veza u interakcijama epinefrina sa gvožđem, proučavana je
konformacija epinefrina u vodi i polarnom rastvaraču dimetil sulfoksidu (DMSO).
U ovoj disertaciji su predstavljeni rezultati proučavanja mehanizama interakcije epinefrina
sa Fe2+ i Fe3+ jonima pri različitim koncentracionim odnosima na pH 7,4, odnosno na pH vrednosti
koja odgovara fiziološkim uslovima. U svrhu istraživanja bioloških efekata epinefrina, u ovoj
disertaciji su predstavljena ispitivanja efekta Epi-Fe3+ kompleksa na ćelije koje konstitutivno
eksprimiraju adrenergičke receptore.
Konformacije epinefrina u polarnim rastvaračima, vodi i DMSO, su proučavane metodama
H nuklearne magnetne rezonance (1H NMR) kao i dvodimenzionalnim metodama nuklearne
magnetne rezonance, i to: 1H - 1H COSY, 1H - 15N HSQC i NOESY. Na NH2 i CH2 grupama
epinefrina su uočeni hemijski neekvivalentni protoni prilikom korišćenja DMSO kao rastvarača.
Ove pojave nisu uočene kada je rastvarač bila voda. Analizom uticaja korišćenog rastvarača na
NMR spektar, i analizom uticaja povećanja temperature uzorka na NMR spektar, dolazi se do
zaključka da jedan od protona amino grupe formira jaku intramolekulsku vezu sa alifatičnom
hidroksilnom grupom, koja je pak H donor drugoj intermolekularnoj vezi sa DMSO. Pomoću
NOESY metode su prikupljeni podaci o prostornoj poziciji protona u bočnom lancu. Na taj način je
formiran 3D model konformacije epinefrina u DMSO. Ukratko, epinefrin formira dodatni petočlani
prsten koji sadrži bifurkovane intramolekulske/intermolekulske vodonične veze i zauzima strukturu
oblika škorpiona, gde kateholni prsten predstavlja telo škorpiona, a bočni lanac predstavlja rep koji
je povijen u smeru glave škorpiona. U vodi, kao rastvaraču, konformacija epinefrina ne poseduje
intramolekulske vodonične veze pa je tada struktura ovog molekula najverovatnije definisana
vodoničnim vezama sa molekulima vode.
U okviru ove disertacije ispitivanjima je ustanovljeno da epinefrin sa Fe3+ jonima gradi
stabilne visokospinske komplekse čija je stehiometrija 1:1 ili 3:1. Stehiometrija ovog kompleksa
zavisi od odnosa koncentracija epinefrina i Fe3+ jona. Na kateholnom prstenu epinefrina atomi
kiseonika predstavljaju mesto za formiranje koordinacione veze unutar fiziološki relevantnog
bidentatnog 1:1 kompleksa. Fe3+ katjon ima slab uticaj na redoks osobine epinefrina. Međutim,
epinefrin i Fe2+ joni grade kompleks koji je jak redukcioni agens. Posledica je redukcija O2,
proizvodnja vodonik peroksida i formiranje Epi-Fe3+ kompleksa. U ovom procesu epinefrin se ne
oksiduje, odnosno Fe2+ jon nije prenosilac, već donor elektrona. Oksidacija Fe2+ jona koja je
katalizovana epinefrinom predstavlja moguće hemijsko objašnjenje za stresom izazvana oštećenja
ćelija srca. Takođe, rezultati ovih ispitivanja su u skladu sa prethodnim istraživanjima kateholamina
u polimerima i njihovih interakcija sa gvožđem, i upućuju na nove strategije za poboljšavanje
efikasnosti umrežavanja kateholaminima bogatih biopolimera i struktura.
U stresnim situacijama epinefrin se luči i može interagovati sa labilnim gvožđem koje se
nalazi u ljudskoj plazmi. Te interakcije mogu prouzrokovati značajne patofiziološke posledice. Uiv
ovoj disertaciji su prikazani rezultati istraživanja prema kojima epinefrin i Fe3+ joni na fiziološkom
pH grade stabilni 1:1 bidentatni kompleks. Takođe je pokazano da na fiziološkom pH epinefrin ne
degradira u prisustvu gvožđa. Utvrđeno je i da epinefrin i Fe2+ joni grade bezbojni kompleks i da je
taj kompleks stabilan pri anaerobnim uslovima. Uočeno je i da epinefrin u prisustvu O2 značajno
promoviše oksidaciju Fe2+ jona i formiranje Epi-Fe3+ kompleksa. Pri eksperimentima rađenim
metodom ciklične voltametrije, Epi-Fe2+ kompleks je pokazao potencijal E1/2 = -582 mV (u odnosu
na standardnu vodoničnu elektrodu). Ovakva vrednost E1/2 potencijala objašnjava katalizovanu
oksidaciju. Interakcije sa gvožđem mogu uticati na biološke efekte/efikasnost epinefrina. Uticaj
vezivanja gvožđa na biološko ponašanje epinefrina je ispitivan metodom nametnute voltaže na
deliću membrane u konfiguraciji cela ćelija, u kulturi ćelija koje konstitutivno eksprimiraju
adrenergičke receptore. Epinefrin je samostalno, bez značajnog prisustva gvožđa, uzrokovao
povećanje amplitude struja usmerenih ka spoljašnosti ćelija, tj. povećanje izlaznih struja. Kompleks
epinefrina sa Fe3+ nije izazivao slične posledice. Ovim se nameće zaključak da formiranje
kompleksa sa gvožđem sprečava vezivanje epinefrina za adrenergičke receptore i njihovu
posledičnu aktivaciju. Prooksidativna aktivnost Epi-Fe2+ kompleksa možda predstavlja vezu između
hroničnog stresa i kardiovaskularnih problema, a labilno gvožđe u plazmi je potencijalni modulator
bioloških aktivnosti liganda.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.