Title
Modeli digitalne predistorzije za hibridne masivne višeantenske predajnike sa formiranjem snopa primenom neuralnih mreža
Creator
Muškatirović-Zekić, Tamara, 1982-
CONOR:
99674889
Copyright date
2023
Object Links
Select license
Autorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
License description
Dozvoljavate samo preuzimanje i distribuciju dela, ako/dok se pravilno naznačava ime autora, bez ikakvih promena dela i bez prava komercijalnog korišćenja dela. Ova licenca je najstroža CC licenca. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.sr_LATN. Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/legalcode.sr-Latn
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 08.09.2023.
Other responsibilities
Academic Expertise
Tehničko-tehnološke nauke
University
Univerzitet u Beogradu
Faculty
Elektrotehnički fakultet
Alternative title
Digital Predistortion Models for Hybrid Beamforming Mаssive Multiple-antenna Transmitters using Neural Networks
Publisher
[T. Muškatirović-Zekić]
Format
131 str.
description
:tehničke nauke, elektrotehnika - telekomunikacije / technical sciences, electrical engineering - telecommunications
Abstract (sr)
Intenzivan i brz razvoj bežičnih sistema nove generacije usko je povezan sa razvojem i
primenom Multiple-Input Multiple-Output (MIMO) tehnika koje omogućavaju povećanje protoka i
spektralne efikasnosti, kao i pouzdanosti sistema. Sa druge strane, javljaju se novi izazovi pri
dizajniranju masivnih višeantenskih (massive MIMO – mMIMO) predajnika zbog pojave nelinearne
distorzije signala. Kako bi se smanjila nelinearna distorzija signala i postigle što bolje performanse
MIMO sistema, neophodno je posebnu pažnju posvetiti digitalnoj predistorziji (DPD) pojačavača
kod mMIMO predajnika.
U okviru ove doktorske disertacije realizovani su i analizirani različiti DPD modeli za
mMIMO predajnike sa hibridnim formiranjem snopa (hybrid beamforming) primenom neuralnih
mreža, sa ciljem razvijanja što efikasnijeg i sofisticiranijeg DPD modela. Neuralne mreže (NN) su
prvenstveno izabrane zbog svoje sposobnosti da veoma dobro aproksimiraju nelinearne funkcije,
kao i zbog svoje prilagodljivosti. Predložen je efikasan Real‐Valued Time‐Delay Neural Network
with 2 hidden Layers (RVTDNN2L) DPD model, kao i proširen RVTDNN2L DPD model kod koga
se u cilju povećanja tačnosti modela koristi dodatni signal koji sadrži informacije o koeficijentima
beamforming-a. Predloženi modeli su implementirani u programskom paketu Matlab i nakon
sprovedenih sveobuhvatnih simulacija, izvršena je analiza i verifikacija efikasnosti kompenzacije
nelinearne distorzije. Simulacije su izvršene za 64x64 HBF mMIMO sistem sa jednim korisnikom i
sa više korisnika, pri čemu su korišćene izmerene vrednosti pojačavača. Dobijeni rezultati prikazani
su korišćenjem grafika i numerički korišćenjem relevantnih metrika: normalizovane srednje
kvadratne greške (NMSE) i amplitude vektora greške (EVM).
Kao rezultat sprovedenog istraživačkog rada, pokazano je da predloženi RVTDNN2L DPD
model i prošireni RVTDNN2L DPD model znatno bolje kompenzuju nelinearnu distorziju u odnosu
na polinomijalne modele, kao i u odnosu na ostale razmatrane NN DPD modele slične
kompleksnosti, čime je izvršeno fundamentalno unapređenje efikasnosti kompenzacije nelinearne
distorzije signala u bežičnim sistemima nove generacije.
Abstract (en)
The intensive and rapid development of new generation wireless systems is closely related to
the development and application of Multiple-Input Multiple-Output (MIMO) techniques, which
increase the throughput and the spectral efficiency, as well as the reliability of a system. On the
other hand, there are new challenges when designing massive MIMO (mMIMO) transmitters due to
nonlinear signal distortion. In order to reduce the nonlinear signal distortion and achieve the best
possible performance of a MIMO system, it is necessary to pay special attention to the digital
predistortion (DPD) of amplifiers in mMIMO transmitters.
Within this doctoral dissertation, different DPD models for mMIMO transmitters with hybrid
beamforming using neural networks are implemented and analyzed, with the aim of developing the
most efficient and sophisticated DPD model. Neural networks (NN) were primarily chosen because
of their ability to approximate nonlinear functions very well, as well as because of their
adaptability. An efficient Real-Valued Time-Delay Neural Network with 2 hidden Layers
(RVTDNN2L) DPD model is proposed, as well as an extended RVTDNN2L DPD model where, in
order to increase the accuracy of the model, an additional signal containing information about the
beamforming coefficients is used. The proposed models are implemented in the Matlab software
package and after comprehensive simulations, the analysis and verification of the effectiveness of
the nonlinear distortion compensation is performed. Simulations were performed for a single-user
and multi-user 64x64 HBF mMIMO system, based on measurement data from an actual amplifier.
The obtained results are presented graphically and numerically using relevant metrics: normalized
mean square error (NMSE) and error vector amplitude (EVM).
As a result of the research work, it is shown that the proposed RVTDNN2L DPD model and
the extended RVTDNN2L DPD model compensate for nonlinear distortion significantly better in
comparison to polynomial models, as well as in relation to other considered NN DPD models of
similar complexity, by which fundamental improvement in the efficiency of compensation of
nonlinear distortion signals in new generation wireless systems has been achieved.
Authors Key words
digitalna predistorzija (DPD), neuralne mreže (NN), massive MIMO, hybrid
beamforming (HBF), pojačavači snage (PA)
Authors Key words
digital predistortion (DPD), neural networks (NN), massive MIMO, hybrid
beamforming (HBF), power amplifiers (PA)
Classification
621.39:004.7(043.3)
Type
Tekst
Abstract (sr)
Intenzivan i brz razvoj bežičnih sistema nove generacije usko je povezan sa razvojem i
primenom Multiple-Input Multiple-Output (MIMO) tehnika koje omogućavaju povećanje protoka i
spektralne efikasnosti, kao i pouzdanosti sistema. Sa druge strane, javljaju se novi izazovi pri
dizajniranju masivnih višeantenskih (massive MIMO – mMIMO) predajnika zbog pojave nelinearne
distorzije signala. Kako bi se smanjila nelinearna distorzija signala i postigle što bolje performanse
MIMO sistema, neophodno je posebnu pažnju posvetiti digitalnoj predistorziji (DPD) pojačavača
kod mMIMO predajnika.
U okviru ove doktorske disertacije realizovani su i analizirani različiti DPD modeli za
mMIMO predajnike sa hibridnim formiranjem snopa (hybrid beamforming) primenom neuralnih
mreža, sa ciljem razvijanja što efikasnijeg i sofisticiranijeg DPD modela. Neuralne mreže (NN) su
prvenstveno izabrane zbog svoje sposobnosti da veoma dobro aproksimiraju nelinearne funkcije,
kao i zbog svoje prilagodljivosti. Predložen je efikasan Real‐Valued Time‐Delay Neural Network
with 2 hidden Layers (RVTDNN2L) DPD model, kao i proširen RVTDNN2L DPD model kod koga
se u cilju povećanja tačnosti modela koristi dodatni signal koji sadrži informacije o koeficijentima
beamforming-a. Predloženi modeli su implementirani u programskom paketu Matlab i nakon
sprovedenih sveobuhvatnih simulacija, izvršena je analiza i verifikacija efikasnosti kompenzacije
nelinearne distorzije. Simulacije su izvršene za 64x64 HBF mMIMO sistem sa jednim korisnikom i
sa više korisnika, pri čemu su korišćene izmerene vrednosti pojačavača. Dobijeni rezultati prikazani
su korišćenjem grafika i numerički korišćenjem relevantnih metrika: normalizovane srednje
kvadratne greške (NMSE) i amplitude vektora greške (EVM).
Kao rezultat sprovedenog istraživačkog rada, pokazano je da predloženi RVTDNN2L DPD
model i prošireni RVTDNN2L DPD model znatno bolje kompenzuju nelinearnu distorziju u odnosu
na polinomijalne modele, kao i u odnosu na ostale razmatrane NN DPD modele slične
kompleksnosti, čime je izvršeno fundamentalno unapređenje efikasnosti kompenzacije nelinearne
distorzije signala u bežičnim sistemima nove generacije.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.